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In addition to our earlier corrections to fusion cross sections, we proposed that 
previously overlooked condensed matter effects (CME) can help to account for 
the missing solar neutrino flux. There are three important CME. One is due to 
a reduction in collision frequency due to an exchange of kinetic and potential 
energies in collision processes. Another is an excluded volume effect. The third 
is a shadowing effect due to the presence of spectator species which do not 
participate in fusion. These CME become appreciable in the high densities 
encountered in stellar media where they significantly affect fusion rates, since the 
solar core plasma cannot accurately be described as a collisionless ideal gas. 
Contrary to Bahcall and Gould (1993), we do not violate Liouville's theorem, 
the Maxwellian distribution, nor thermodynamics in our proposed solution to 
the solar neutrino problem. 

I. INTRODUCTI O N 

It is intriguing that the enigmatic solar neutrino puzzle may have a 
solution in careful consideration of the details rather than with grand new 
ideas. The standard solar model (SSM) has been successful in relating the 
mass and composition of the sun to its luminosity and lifetime. The SSM 
has also been widely accepted, as it appears to be based upon well-under- 
stood nuclear physics. However, as we have shown, this has included 
cross-section approximations that work well at high energies, but are 
invalid for the solar energy regime (Kim et al, 1993c). In fact the SSM has 
appeared to work so well that the preponderance of attempted theoretical 
solutions has been directed at the neutrinos, rather than the SSM. A wide 
range of imaginative proposed solutions abound, of which oscillation of the 
electron neutrino to another neutrino family has been one of the more 
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popular. This has yet to be demonstrated, and depends upon a nonzero 
neutrino rest mass, which is also speculative. 

While accepting the basic framework of the SSM, we find that 
significantly different predictions result by including overlooked condensed 
matter effects (CME) as input into the SSM (Kim et al., 1993a,b). The 
virial equation for the dense solar core plasma deviates significantly from 
that of a collisionless ideal gas espoused by Bahcall and Gould (1994) 
(BG), as shown by a recent molecular dynamics simulation (Braswell and 
Kim, 1993a,b; Kim et aL 1993d, 1994). In dense stellar plasmas, the 
ensemble of fusing particles converts a significant fraction of the kinetic 
energy into potential energy, thus diminishing the flux and hence collision 
rate. We call this the condensed matter energy exchange effect (CMEE). 
The flux is selectively reduced much more for the 7Be(p, 7)SB reaction, 
because of the greater Coulomb barrier, than for the p(p ,  e +ve)D reaction. 
This is just what is needed, as the latter reaction rate is fairly well 
established, whereas the former is thought to be higher than experimentally 
measured by as much as a factor of three. In the presence of nonfusing 
spectator species, there is also a high-density condensed matter interference 
effect (CMIE). CMIE may be thought of as due to shadowing or interfer- 
ence caused by spectator species, resulting in reduced fusion rates. An 
additional CME is related to excluded volume (CMEVE), which has an 
analog in liquids and inside nuclei (Kim et al., 1993a,b,d, 1994). 

In some cases, even at high density, the noninteraction collisionless 
models as used by BG can yield accurate predictions. This may be because 
some of the CME act to decrease fusion rates, whereas others serve to 
increase fusion rates. In the CMEE, the conversion of kinetic to potential 
energy at high densities decreases fusion rates, as does the spectator 
interference effect (CMIE). On the other hand, for a given temperature the 
excluded volume effect increases the collision frequency and hence increases 
fusion rates. The presence of spectator species also acts to increase 
CMEVE. However, one cannot always count on a cancellation of opposing 
effects, and it is necessary to use a more sophisticated, albeit more complex 
model including CME. 

CME affect fusion rates appreciably only at the high densities encoun- 
tered in stellar media, and quickly diminish at ordinary densities. However, 
we purposely have called these effects condensed matter effects rather than 
high-density effects because in collisionless models such as that of BG it 
makes no difference whether the density is high or low. In a noninteracting 
gas the collisionless calculations of BG would be valid at all densities, But 
they are not valid at high densities when CME are present and do not 
cancel out. Recent molecular dynamics simulation studies (Braswell and 
Kim, 1993, n.d.; Kim et al., 1993d, 1994) indicate that CMEE and CMEVE 
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are more significant at lower energies than the 1.2 keV typical of the solar 
interior, and/or at higher densities than the solar core. 

2. CONDENSED MATTER ENERGY EXCHANGE EFFECT (CMEE) 

Although we have examined three CME (Kim et al., 1993a,b,d, 1994), 
Bahcall and Gould (1993) have chosen to focus only upon our CMEE. 
They say, "We show with the aid of Liouville's theorem that the effects in 
question are already included in the standard treatment [p. 1] . . .  the 
standard treatment implicitly assumes that nuclei are collisionless [p. 3]." 
The conventional standard treatment assumed by BG that nuclei are 
collisionless leads to an inaccurate description of the dense solar core 
plasma as shown by molecular dynamics simulation (Braswell and Kim, 
1993a,b; Kim et al., 1993d, 1994), and hence CMEE and other CME are 
needed to improve estimates of collision and fusion rates. 

Our main premise with respect to CMEE is that it significantly 
decreases the collision rate for all collisions at solar core densities, and in 
particular the subset of those collisions that lead to fusion. It is noteworthy 
that BG do not address the "collision rate" issue in their rebuttal endeavor. 
This is strange since it is at the heart of our analysis, and should be the key 
point of contention if they truly have a valid point of disagreement. 

In a dense plasma such as the solar interior, because the time average 
of the potential energy is a significant component of the total energy, the 
time-averaged kinetic energy is reduced compared to a collisionless gas of 
the same total energy. This reduces the effective flux of fusing nuclei in the 
fusion rate formula, their total collision rates, and consequently their fusion 
rates. The nuclei slow down as they approach the repulsive shielded 
Coulomb barrier. Thus the initial velocity or asymptotic velocity v, as nuclei 
are far apart, needs to be replaced by a time average velocity u in fusion rate 
calculations. At ordinary densities or at very high energies, the difference 
between v and u is negligible, but not at the keV energy and 102 gm/cm 3 
density in the solar core, as we have shown (Kim et al., 1993a,b). 

A concomitant effect is the reduction in density in the neighborhood of 
collision points. This is a local effect near collision centers which has an 
analog to the global decrease in density in the earth's atmosphere with 
increasing altitude due to the earth's gravitational potential. The locally 
decreased velocities and decreased densities are consistent with both the 
Maxwellian distribution and Liouville's theorem. Although the local distri- 
bution function for microcanonical ensembles in the neighborhood of 
collision points does not have to be the same as the overall global 
distribution, we conservatively used the same Maxwellian distribution here. 
Liouville's theorem teaches the conservation of the density of possible 
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points of a system in phase space. Thus if the velocity component of phase 
space decreases, the spatial component increases. For a system with a fixed 
number of particles, the increase in the spatial component implies a 
decrease in number density (number of nuclei/volume) in real space. Thus 
we do not claim anything that is contrary to the overall Maxwellian 
distribution or to Liouville's theorem. 

Aside from a direct quotation of ours, which is correctly presented, 
BG often misrepresent our arguments. For example, they say, "Specifically, 
they argue that in the dense environment of the Sun, the phase-space 
densities of fusing nuclei are lower at the point where they last scatter off 
ambient particles (prior to reacting) than are the phase-space densities of 
the same particles when they are far apart" (Bahcall and Gould, 1994, p. 
995). We did not say this and have always been aware that Liouville's 
theorem conserves the phase-space density. We have always dealt with 
the "real-space" density. We showed in the preceding paragraph that 
Liouville's theorem implies that the real-space density decreases. The 
real-space density may be obtained by integrating the phase-space density 
with respect to the velocity components. Nevertheless, the two densities are 
quite different. 

In our previous work (Kim et al., 1993a,b), we showed that the 
Maxwellian distribution also implies a decrease in the real-space density. 
Even though the Maxwellian is unchanged, the overall normalization is 
changed because of the exponential factor containing the potential energy 
t e r m .  

The solar core density of ~ 3 0 / / ~  3 corresponds to an average center-to- 
center spacing of ions of ~0.32 A. Since the screening radius is a ~ 0.25 A 
(Sall~ter, 1954) for the Debye-H/ickel potential V(r) = Z i Z 2 e 2 e - ' / U / r ,  the 
solar core (proton-electron) plasma cannot properly be described as a 
collisionless ideal gas. There is no region in the solar core where the 
potential energy vanishes. The potential energy at the equilibrium radius re 
is not the same as the zero of potential energy at infinity. Neither do we 
advocate that "Hence the calculation of reaction rates (which implicitly 
assumes free particles) should use the phase-space distribution of particles 
at re rather than at infinity" as incorrectly ascribed to us by Bahcall and 
Gould (1994, p. 996), 

BG improperly attempted to relate, via Liouville's theorem, two 
distinctly different physical systems that have different Hamiltonians. One 
is the real nonideal gas (dense solar core plasma), and the other is a 
collisionless ideal gas. Although the latter is the low-density limit or 
noninteraction limit of the former, the two are not physically the same. 
Liouville's theorem applies to either one individually, but not to both the 
nonideal gas and the ideal gas simultaneously and indiscriminantly. Of 
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course we think that only a real gas calculation should be used in the SSM, 
just as real gas van der Waals or virial correlations are standardly used 
when more accurate results are needed than given by the ideal gas law. 

3. FLUCTUATIONS 

BG would have the reader think that not only do we transgress 
Liouville's theorem, but that we also espouse an even more drastic viola- 
tion of the laws of physics. We made a parenthetical remark that there may 
be a departure from thermal equilibrium "locally" as kinetic energy is 
converted to potential energy during collisions. This leads BG to conclude, 
"However, such a departure from equilibrium would require a violation of 
the Second Law of Thermodynamics" (Bahcall and Gould, 1994, p. 998). 
Fluctuations are a deviation from thermal equilibrium and are caused by 
collisions. Fluctuations are an accepted part of statistical mechanics and 
thermodynamics, and are compatible with the second law. It is well known 
that even in those instances when fluctuations lead to a decrease in entropy 
locally, the total entropy still increases globally. 

4. CONDENSED MATTER EXCLUDED VOLUME EFFECT (CMEVE) 

It is well established that for liquid and dense gaseous systems, the 
molecular collision rate is significantly different from the value predicted by 
the simple kinetic theory championed by BG, due to the excluded volume 
effect (Hansen and McDonald, 1986). The excluded volume effect is 
important in nuclear theory, and significantly increases the Fermi energy of 
nucleons in a nucleus (Weisskopf, 1972). We have investigated CMEVE in 
the solar core by a molecular dynamics simulation (Kim et al., 1993d, 
1994). 

From kinetic theory, the collision rate for particles in an ideal gas is 
given by 

F 0 = x//2nau ( 1 ) 

where n is the number density, tr is the collision cross section, and u is the 
mean speed. Hansen and McDonald (1986) show that relaxing the ideal gas 
assumption yields for a hard-sphere system a collision rate as given by 

F = F0g(d ) (2) 

where g(d) is the radial distribution function g(r) evaluated at the hard- 
sphere diameter r = d. The radial distribution function is defined (Allen 
and Tildesley, 1987) as the number of particles, on average, in the volume 
4nr 2 dr centered about a given particle divided by the number that would 
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be in the same volume if the system behaved as an ideal gas. Hence for an 
ideal gas g(r) = 1. 

Braswell and Kim (1993a,b) used molecular dynamics to compute the 
radial distribution function for nuclei with a screened Coulomb potential 
(Salpeter, 1954) in a simulation of the solar core. At a temperature of 
1.2 keV and below, there was a significant deviation from an ideal gas 
(Kim et al., 1994). The results ofg(r) < 1 at short distances support CMEE 
for the solar neutrino problem as previously calculated (Kim et al., 
1993a,b). 

For a given radial distribution g(r), the ratio p / n k T  can be calculated 
from the virial (or pressure) equation (Hansen and McDonald, 1986). This 
is given by 

P =1 n ~ n kT  - ~ V'(r)rg(r) d3r (3) 

where V'(r) = dV(r)/dr. The second term on the right side of equation (3) 
is the nonideal contribution. With g(r) computed from a molecular dynam- 
ics simulation (Braswell and Kim, 1993, n.d.) using the Debye-Hiickel 
potential (Salpeter, 1954) for the proton-electron solar core plasma, the 
virial equation becomes 

P = 1 + (3a2)(0.994) = 1.143 (4) 
n kT  \ 3/I k T  

As input to equation (4), we used the solar core density of 30.12//~ 3, the 
screening radius a = 0.251/~, and the solar core temperature k T  -- 1.2 keV. 

If we wish to describe the above result for the solar core plasma in 
terms of an ideal gas formulation for a fictitious collisionless gas with the 
same density and temperature as BG do, equation (4) may be rewritten in 
the form of an ideal gas 

p* 
- -  = 1 ( 5 )  
nk T 

where p * =  p/1.143 is an effective (fictitious) pressure for the collisionless 
ideal gas model which BG and others use. Having the effective pressure p* 
less than the real pressure p indicates the effects of a repulsive potential in 
both the virial of Clausius and van der Waals formulations of real gases. 
This justifies our use of CME, contrary to the claims of BG. 

Insofar as the idealized collisionless point model of BG goes, as 
constrained by the conservation of energy, the spatial component in phase 
space may become arbitrarily small in any and all dimensions as long as the 
overall phase-space volume for their system remains constant. This is 
unphysical, as within the constraints of the given gravitational potential, 
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the ions and their shielded Coulomb potentials cannot all occupy the same 
space. This implies that there is a minimum spatial volume and minimum 
coordinate range that a real system can attain in phase space consistent 
with energy conservation. Thus CMEVE must be included as a boundary 
condition even in the Liouville approach to obtain realistic results for a 
dense system. 

5. CONDENSED MATTER INTERFERENCE EFFECT (CMIE) 

The presence of nonfusing spectator species leads to CMIE, i.e., a 
shadowing effect in which spectator species get in the way of collisions 
between fusing species. We presented a calculation for CMIE (Kim et al., 
1993a) representative of conditions in the solar core. This showed that the 
presence of species like 4He has a nonnegligible effect in reducing fusion 
rates. 

Again the idealized collisionless point model of BG is unphysical with 
respect to the two roles spectator species play at high densities. For BG, 
spectator species cannot interfere in preventing collisions between fusing 
nuclei, as they have no volume. Because of their volume, spectator species 
also act to limit the accessible regions of phase space. Thus the neglect of 
both CMIE and CMEVE in the collisionless BG approach can lead to 
unrealistic results for highly dense sysems containing an appreciable frac- 
tion of spectator species such as 4He in the solar interior. 

6. LIOUVILLE'S THEOREM 

Our CME do not violate LiouviUe's theorem. However, because this 
theorem is key to the work of BG let us examine it briefly. In the absence 
of collisions, the Boltzmann transport equation can yield Liouville's theo- 
rem. Liouville (1837) showed that the measure of a set of points is an 
invariant of the natural motion in phase space. In other words, if any 
portion of phase space is densely and uniformly filled with moving points 
representing a dynamical system in different possible states of motion, then 
the laws of motion are such that the density of these points remains 
constant in phase space. Each system is represented by a single point in 
phase space, and the ensemble of systems corresponds to a swarm of points 
in phase space. Thus each point represents a system of N particles, where 
N ,-~ 1 0  23 in a phase space of 3N spatial coordinates and 3N momentum 
coordinates. All the members of the ensemble are as like our system of 
interest as permitted by physics and our knowledge, but they may have any 
of the initial conditions that are allowable. The many replicas of the system 
of interest occupy all the admissible initial conditions and times. The 
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volume of phase space between two energy surfaces E and E + AE has the 
physical dimensions of (energy x time) 3~. 

Since Liouville's theorem is considered so central by some in the method- 
ology related to the solar neutrino problem as well as plasma fusion in 
general, let us consider its applicability and limitations. First of all it only 
applies in a nondissipative system in which energy (KE + PE) is conserved. 
Strictly speaking, the solar energy is not conserved. Second, realization of 
Liouville's theorem depends subtlely on the ergodic hypothesis, since it is 
assumed that the system can indeed move from one region of phase space 
to another based upon the equations of motion, consistent with the 
conservation of energy. The ergodic hypothesis implies that every state of 
the system can be reached directly or indirectly from every other state. This 
means that if the energy of the system is determined within a range AE, the 
probability of finding the system in a certain state compatible with that 
energy is the same for each state. This is the basis of statistical mechanics, 
wherein the time average over the evolution of the system is replaced by the 
average over the different states. 

"It can actually be demonstrated that a classical system cannot be truly 
ergodic" (Mayer and Mayer, 1940). Hence the work of BG cannot be strictly 
rigorous, even without CME considerations, because their implementation 
of Liouville's theorem depends upon the ergodic hypothesis. In a system 
such as the sun, where fusion is occurring, we do not think that Liouville's 
theorem applies rigorously even for quantum mechanics due to the disap- 
pearance of high-energy states for given species in the act of fusion. At 
predominantly high energies, the fusing species disappear and new species 
are formed. Our work respects Liouville's theorem and does not trespass it. 
Nevertheless, we point out these relatively minor things to show that 
Liouville's theorem should be used with care in such environments. 

7. SUMMARY AND CONCLUSIONS 

We presented three CME and an analysis showing a significant error 
in the cross sections used in the standard solar model. BG have chosen only 
to address our condensed matter energy exchange effect (CMEE). Since 
they have ignored the others, is this an indication that this is the only one 
of our four points with which they disagree? With respect to our CMEE, 
BG have not addressed our main point that the collision and hence fusion 
rates are decreased. Rather they have raised a bogus issue related to 
Liouville's theorem and phase space rather than real space. 

Our CMEE relates to a decrease in collision and hence fusion rates 
because of a slowing down of the fusing nuclei as kinetic energy is 
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converted to potential energy. This also involves a reduction in real-space 
number density in the neighborhood of colliding nuclei as they approach 
the classical turning point compared with their real-space number density 
when they are far apart. The real-space density is not the same as the 
phase-space density, though BG seem to think they are the same. 

According to Liouville's theorem, the phase-space density should be 
conserved at all points in phase space. Even if the phase-space density is 
conserved, the real-space number density decreases, decreasing the number 
of nuclei/volume, for a fixed number of particles because the spatial 
component increases as the velocity space decreases. The real-space number 
density decreases as the nuclei convert kinetic energy to potential energy, 
much the same as the earth's atmospheric density decreases as the gravita- 
tional potential increases. In the case of the atmosphere there is also a 
reduction in the temperature at the highest altitudes with concomitantly 
low density so that the collision frequency is insufficient to restore the 
temperature corresponding to lower altitudes. In a gas or plasma, a 
collision is essentially the conversion of kinetic to potential energy and 
back again to kinetic energy. Fluctuations occur during collisions in which 
small local regions in the neighborhood of the collisions deviate from 
thermal equilibrium but do not violate the second law of thermodynamics. 
Temperature and density fluctuate locally in time and space, which is a 
more complicated problem than just the analog to the increased gravita- 
tional potential in the earth's atmosphere. 

BG not only misrepresent our views, they are also not consistent in 
presenting their own views. For example BG say, "Here we show that the 
reduced phase space density at close separations is already taken into 
account in the standard calculations" (Bahcall and Gould, 1994, p. 995). 
By Liouville's theorem, the phase-space density is conserved everywhere. 
Hence, contradictory to BG, the phase-space density is not "reduced" at 
close separations. Furthermore, contrary to the views of BG, we do not 
violate Liouville's theorem, the Maxwellian distribution, nor thermody- 
namics in our proposed solution to the solar neutrino problem. We do 
show that our three CME have a significant influence on fusion rates, as do 
the corrected fusion cross sections. These considerations should be included 
in the input to the standard solar model and stellar model calculations, just 
as virial or van der Waals corrections are made to real gases. Our CME 
provide estimates of corrections for the collision and fusion rates for the 
nonideal gas contributions in the solar core. As an alternative approach we 
have also applied virial corrections to the solar core and obtain results 
consistent with our earlier calculations that the collision frequency and 
fusion rates are significantly reduced. 
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